logo image
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • SlatorCon Remote May 2021
    • Localizing at Scale for International Growth
    • Design Thinking May 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs
MENU
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • SlatorCon Remote May 2021
    • Localizing at Scale for International Growth
    • Design Thinking May 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs

Register Now for SlatorCon Remote on May 13th!

  • Slator Market Intelligence
  • Slator Advertising Services
  • Slator Advisory
  • Login
Search
Generic filters
Exact matches only
Advertisement
The 4,000 Lines of Code Harvard Hopes Will Change Translation

4 years ago

January 12, 2017

The 4,000 Lines of Code Harvard Hopes Will Change Translation

Academia ·

by Marion Marking

On January 12, 2017

4 years ago
Academia ·

by Marion Marking

On January 12, 2017

The 4,000 Lines of Code Harvard Hopes Will Change Translation

OpenNMT should become for neural machine translation (NMT) what Moses is to phrase-based statistical machine translation. So hope the creators of OpenNMT from Harvard and Systran as they launch an NMT toolkit for what they describe as a “widely-applied technique for machine translation.”

The release of the paper outlining the toolkit follows Harvard NLP’s December announcement of the OpenNMT system.

In their paper, Systran Research Engineer Guillaume Klein, Harvard NLP’s Yoon Kim and Yuntian Deng, Systran Chief Scientist Jean Senellart, and Harvard NLP adviser Alexander Rush outline an open-source NMT toolkit that aims to “support NMT research” through “modeling and translation support, as well as detailed pedagogical documentation about the underlying techniques” of the Harvard OpenNMT system.

Advertisement

The keyword is “open-source.” As the paper points out, although there are now several existing NMT models, they are either “closed source…unlikely to be released with unrestricted licenses,” such as those by Google, Microsoft, and Baidu or “exist mostly as research code” (GroundHog, Blocks, tensorflow-seq2seq, lamtram, and Harvard’s own seq2seq-attn).

While the authors acknowledge that these systems serve an important purpose, they add that such systems provide little support for use in an actual production environment.

They call the University of Edinburgh’s Nematus system “most promising,” touting its high-accuracy translation, clear documentation, and use in several successful research projects — and then promptly compare Harvard OpenNMT to Nematus via the inevitable BLEU score yardstick. (Guess which won? See table excerpted from paper.)

The paper notes that “one nice aspect of NMT as a model is its relative compactness”; that is, relative to Moses. The entire OpenNMT system (with pre-processing, the authors note) has around 4,000 lines of code. The Moses SMT framework comes in at over 100,000 lines of code, according to the paper’s authors.

At press time, OpenNMT had garnered 606 stars on GitHub and its creators say there has been “active development by those outside” Harvard and Systran. So it seems like some of the hobbyists Rush mentioned in Slator’s previous coverage are indeed starting to tinker with the system.

The launch of the toolkit comes at a time of intense mainstream interest in the accelerating progress of language technology in general, and neural machine translation in particular. Major news outfits, such as the The New York Times and the The Economist recently reported on these latest developments.

TAGS

Alexander RushGuillaume KleinHarvardJean Senellartneural machine translationSystranYoon KimYuntian Deng
SHARE
Marion Marking

By Marion Marking

Slator consultant and corporate communications professional who enjoys exploring Asian cities.

Advertisement

SUBSCRIBE TO THE SLATOR WEEKLY

Language Industry Intelligence
In Your Inbox. Every Friday

SUBSCRIBE

SlatorSweepSlatorPro
ResearchRFP CENTER

PUBLISH

PRESS RELEASEDIRECTORY LISTING
JOB ADEVENT LISTING

Bespoke advisory including speaking, briefings and M&A

SLATOR ADVISORY
Advertisement

Featured Reports

See all
Pro Guide: Translation Pricing and Procurement

Pro Guide: Translation Pricing and Procurement

by Slator

Slator 2020 Language Industry M&A and Funding Report

Slator 2020 Language Industry M&A and Funding Report

by Slator

Slator 2021 Data-for-AI Market Report

Slator 2021 Data-for-AI Market Report

by Slator

Slator 2020 Medtech Translation and Localization Report

Slator 2020 Medtech Translation and Localization Report

by Slator

Press Releases

See all
Venga Reshapes Language Review with InQA Cloud Application

Venga Reshapes Language Review with InQA Cloud Application

by Venga Global

Smartling Announces Smartling+

Smartling Announces Smartling+

by Smartling

XTM Cloud 12.7 “Intelligent Connectivity” is Here

XTM Cloud 12.7 “Intelligent Connectivity” is Here

by XTM International

Upcoming Events

See All
  1. SlatorCon Remote May 2021

    by Slator

    · May 13 @ 3:00 pm - 8:00 pm

    A rich online conference which brings together our research and network of industry leaders.

    More info $110

Featured Companies

See all
Sunyu Transphere

Sunyu Transphere

Text United

Text United

Memsource

Memsource

Wordbank

Wordbank

Protranslating

Protranslating

SeproTec

SeproTec

Versacom

Versacom

Smartling

Smartling

XTM International

XTM International

Translators without Borders

Translators without Borders

STAR Group

STAR Group

memoQ Translation Technologies

memoQ Translation Technologies

Advertisement

Popular articles

Google Translate Not Ready for Use in Medical Emergencies But Improving Fast — Study

Google Translate Not Ready for Use in Medical Emergencies But Improving Fast — Study

by Seyma Albarino

The Slator 2021 Language Service Provider Index

The Slator 2021 Language Service Provider Index

by Slator

DeepL Adds 13 European Languages as Traffic Continues to Surge

DeepL Adds 13 European Languages as Traffic Continues to Surge

by Marion Marking

SlatorPod: The Weekly Language Industry Podcast

connect with us

footer logo

Slator makes business sense of the language services and technology market.

Our Company

  • Support
  • About us
  • Terms & Conditions
  • Privacy Policy

Subscribe to the Slator Weekly

Language Industry Intelligence
In Your Inbox. Every Friday

© 2021 Slator. All rights reserved.

Sign up to the Slator Weekly

Join over 13,800 subscribers and get the latest language industry intelligence every Friday

Your information will never be shared with third parties. No Spam.