logo image
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs
MENU
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs

Advertise on Slator! Download the 2021 Online Media Kit Now

  • Slator Market Intelligence
  • Slator Advertising Services
  • Slator Advisory
  • Login
Search
Generic filters
Exact matches only
Advertisement
Swiss Science Foundation Grants USD 0.5m to Take Neural MT Beyond the Sentence

4 years ago

June 23, 2017

Swiss Science Foundation Grants USD 0.5m to Take Neural MT Beyond the Sentence

Academia ·

by Florian Faes

On June 23, 2017

4 years ago
Academia ·

by Florian Faes

On June 23, 2017

Swiss Science Foundation Grants USD 0.5m to Take Neural MT Beyond the Sentence

Switzerland’s National Science Foundation is one of the Swiss government’s main vehicles to support innovation. In 2016, the foundation supported over 3,200 new projects, funding them to the tune of nearly CHF 0.93bn (USD 0.95bn).

The projects run across all categories with CHF 264m allocated to the social sciences, CHF 337m allocated to math, physics, engineering etc., and CHF 334m allocated to biology and medicine.

Getting funded is a highly competitive process and a successful application requires jumping through a number of admin hoops as well as convincing the foundation of the value of the research.

Advertisement

One of the projects that successfully navigated the funding maze was “Rich Context in Neural Machine Translation” (CoNTra) by Martin Volk and his collaborators Annette Rios and Rico Sennrich. The project is set to receive CHF 0.46m over the course of the next three years.

Volk is a professor at the Institute of Computational Linguistics of the University of Zurich. It is not the first time Volk received funding from the Foundation. In 2010, 2013, and 2014, he obtained nearly CHF 1.6m for three machine translation-related projects.

Beyond the Sentence

Slator met with Volk and Samuel Läubli, a Ph.D. student at Volk’s Institute, in Zurich to discuss the project and how the recent boom in artificial intelligence (AI) is affecting many areas in natural language processing, including machine translation.

Martin Volk

In addition to their collaboration at the University of Zurich, Volk and Läubli are partners in a spin-off company called TextShuttle, which develops custom machine translation (MT) engines and advises enterprises on how best to leverage MT, including neural MT. 

Volk told Slator that the inherent ambiguity of natural language is the core challenge for all things machine translation. That is why one of the CoNTra project’s main goals is to figure out how to infuse machine translation with much more contextual information beyond the sentence level.

Volk explains: “When Google Translate has to translate a text as someone is inputting it, the system has to split up the text by the sentence and send each sentence to different processing units.

Due to the speed at which the translation has to be served up, those units have no way of communicating with each other and, hence, are unable to process context that goes beyond the sentence level.”

“For us, speed is not the key. We want to drill down on how information from sentences preceding and following the one being translated can be used to improve the translation,” Volk says.

While neural machine translation’s by now well known improved fluency is partially achieved by its ability to include more context within the same sentence, NMT does not go beyond the sentence level yet either, according to Volk.

The abstract for CoNTra’s project submission explains the challenge in somewhat more technical language: “It has been rather cumbersome to include document-level information into SMT systems. Neural MT provides a more elegant and straightforward way to include lexical preferences, which have been derived from neighboring sentences. This will help to improve lexical choice which is still one of the major problems in machine translation.”

What makes Volk’s project different from many other NMT research projects is its language focus. “Everyone does English,” Volk says, so they decided to focus on Switzerland’s national languages – German, French, and Italian – first.

Pings on LinkedIn

Samuel Läubli

How does the current AI boom impact computer linguistics? Volk says that they had been doing NLP for two decades in relative quiet but the current AI boom definitely brought a lot of new researchers into the field. “There is a lot more competition now,” he observes. On the flip side, Volk says his graduates’ job prospects have improved as well.

Ph.D. student and TextShuttle partner Läubli concurs. “You definitely notice it when you log on to LinkedIn. There are a lot more requests along the lines of ‘hey, great opportunity with company X’.”

Gradually Approaching Human Quality

Volk’s take on future of machine translation? “I think that as computing power inevitably increases and neural learning mechanisms improve, machine translation quality will gradually approach the quality of a professional human translator over the coming two decades. There will be a point where in commercial translation (not literature) there will no longer be a need for a professional human translator.”

“Ten years ago I would have probably been more cautious in my assessment,” he continues. “But looking at what these systems can do and how large the corpus of existing translations has become, I don’t see a reason why these learning mechanisms should not enable computers to achieve human translation quality at some point.”

Meanwhile, Volk’s CoNTra project has been ongoing for over six months and is slated to end in 2019. No doubt, much progress will have been made by then.

Image: University of Zurich and Federal Institute of Technology (ETH) at night

TAGS

Martin VolkSamuel LäubliTextShuttleUniversity of Zurich
SHARE
Florian Faes

By Florian Faes

Co-Founder of Slator. Linguist, business developer, and mountain runner. Based in the beautiful lakeside city of Zurich, Switzerland.

Advertisement

SUBSCRIBE TO THE SLATOR WEEKLY

Language Industry Intelligence
In Your Inbox. Every Friday

SUBSCRIBE

SlatorSweepSlatorPro
ResearchRFP CENTER

PUBLISH

PRESS RELEASEDIRECTORY LISTING
JOB ADEVENT LISTING

Bespoke advisory including speaking, briefings and M&A

SLATOR ADVISORY
Advertisement

Featured Reports

See all
Slator 2020 Language Industry M&A and Funding Report

Slator 2020 Language Industry M&A and Funding Report

by Slator

Slator 2021 Data-for-AI Market Report

Slator 2021 Data-for-AI Market Report

by Slator

Slator 2020 Medtech Translation and Localization Report

Slator 2020 Medtech Translation and Localization Report

by Slator

Pro Guide: Sales and Marketing for Language Service Providers

Pro Guide: Sales and Marketing for Language Service Providers

by Slator

Press Releases

See all
iDISC Awarded ISO 27001 Information Security Management Certification

iDISC Awarded ISO 27001 Information Security Management Certification

by iDISC

XTRF Launches a Bi-Monthly Free Networking Event for Localization Professionals

XTRF Launches a Bi-Monthly Free Networking Event for Localization Professionals

by XTRF

150 Million Words Translated: the German EU Council Presidency Translator Sets New Records

150 Million Words Translated: the German EU Council Presidency Translator Sets New Records

by Tilde

Upcoming Events

See All
  1. Memsource MT Post-Editing Pricing Models Webinar

    Pricing Models for MT Post-Editing Workshop

    by Memsource

    · February 3

    Hear a panel of innovative localization professionals share different approaches for MT post-editing pricing.

    More info FREE

Featured Companies

See all
Text United

Text United

Memsource

Memsource

Wordbank

Wordbank

Protranslating

Protranslating

Seprotec

Seprotec

Versacom

Versacom

SDL

SDL

Smartling

Smartling

Lingotek

Lingotek

XTM International

XTM International

Smartcat

Smartcat

Translators without Borders

Translators without Borders

STAR Group

STAR Group

memoQ Translation Technologies

memoQ Translation Technologies

Advertisement

Popular articles

Why Netflix Shut Down Its Translation Portal Hermes

Why Netflix Shut Down Its Translation Portal Hermes

by Esther Bond

The Slator 2020 Language Service Provider Index

The Slator 2020 Language Service Provider Index

by Slator

Top Language Industry Quotes of 2020

Top Language Industry Quotes of 2020

by Monica Jamieson

SlatorPod: The Weekly Language Industry Podcast

connect with us

footer logo

Slator makes business sense of the language services and technology market.

Our Company

  • Support
  • About us
  • Terms & Conditions
  • Privacy Policy

Subscribe to the Slator Weekly

Language Industry Intelligence
In Your Inbox. Every Friday

© 2021 Slator. All rights reserved.

Sign up to the Slator Weekly

Join over 13,000 subscribers and get the latest language industry intelligence every Friday

Your information will never be shared with third parties. No Spam.