logo image
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs
MENU
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs

Advertise on Slator! Download the 2021 Online Media Kit Now

  • Slator Market Intelligence
  • Slator Advertising Services
  • Slator Advisory
  • Login
Search
Generic filters
Exact matches only
Advertisement
Terminology Assistance Coming to a Simultaneous Interpreter Near You

2 years ago

April 24, 2019

Terminology Assistance Coming to a Simultaneous Interpreter Near You

Academia ·

by Gino Diño

On April 24, 2019

2 years ago
Academia ·

by Gino Diño

On April 24, 2019

Terminology Assistance Coming to a Simultaneous Interpreter Near You

Simultaneous interpreters may soon get live, genuinely useful terminology assistance via computer-assisted interpreting (CAI).

Back in May 2018, Slator covered preliminary research around CAI, specifically the automatic evaluation of when simultaneous interpreters would need help in their work. Several of those paper’s authors submitted their follow-up research to arXiv.org on April 1, 2019, entitled “Lost in Interpretation: Predicting Untranslated Terminology in Simultaneous Interpretation.”

PhD students Nikolai Vogler and Craig Stewart led the study with co-author Graham Neubig, Assistant Professor at Carnegie Mellon University, all of whom were among the five authors of the previous paper.

Advertisement

Function not Distraction

The system proposed by this research, which can potentially be added to CAI as a feature for simultaneous interpreters, provides terminology assistance only when needed.

The system predicts when a term in the stream of spoken source words might be left untranslated by the interpreter. It then assesses whether the term is left untranslated because it is irrelevant or because it is difficult. In the latter case, it offers assistance in the form of targeted terminology translation suggestions that do not distract the user.

According to Neubig, the method from this latest research directly follows from and is meant to be used in conjunction with their previous one. “Assistance with terminology, or other difficult-to-translate words, was our original goal, and the quality estimation work was meant as a tool to give better terminology assistance,” he explained.

He noted how “during discussions with our simultaneous interpreter collaborators, they were very concerned that CAI systems would be a distraction when added to their workflow.”

The researchers are currently collaborating with interpreters to set up a user study of CAI embedded with their terminology assistance method. “We would also be very happy to hear from other individual interpreters, interpretation groups, or interpretation schools who might be interested in participating,” Neubig said.

Fudging Skills

While Chinese giants like Baidu are proposing ways of simply using automatic interpretation directly, others are in hot water for faking it. All these companies insist that their efforts are not meant to replace but assist interpreters; and they have uses quite separate from simultaneous interpretation.

“No one can predict exactly where this technology will be in 5, 10, 20 years,” Neubig said. He pointed out that, despite their rapid progress, these technologies are still prone to “fatal errors” where output is rendered incomprehensible or, arguably, worse, and where the output is the opposite of what is intended.

“Humans, on the other hand, are remarkably robust with respect to this, and they also are good at ‘fudging’ when they don’t know how to do something. They won’t just brazenly output a wrong translation,” he said.

While Neubig said “there is no way” he would trust a machine in the high-stakes situations navigated by simultaneous interpreters, he admits machines have their uses. “I think it’s great that companies are working on it and productizing it,” he concluded.

Involve Experienced Interpreters

The bottom line is how helpful this new terminology assistance method can be to those actually working in the field. Slator reached out to a few interpreters as well as expert interpretation researchers to gain more insight.

Alexander Gansmeier, Jonathan Downie, and Alexander Drechsel, interpreters who host the podcast Troublesome Terps, took a look at the research and had this to say: “CAI technology offers exciting possibilities for revolutionizing interpreting in the same way CAT tools revolutionized translation. The weakness of many of the tools developed so far is that they are based on an erroneous view of interpreting, which ignores research on interpreters making deliberate decisions to omit text, add explanations, or adjust their output.”

According to Gansmeier, Downie, and Drechsel, “predicting difficult terminology and offering suggestions on the fly is a fantastic idea and the [research] team seems to be well on their way to achieving that. However, with the testing done so far, it is difficult to know how well it will perform under real-world conditions.”

They also urged the researchers to look into work done on interpreter omissions and decision-making by names such as Jemina Napier, Anthony Pym, Cecilia Wadensjö, Graham Turner, and Ebru Diriker.

“CAI technology offers exciting possibilities for revolutionizing interpreting in the same way CAT tools revolutionized translation.” — Troublesome Terps

“The technology is unlikely to become truly useful until researchers involve experienced interpreters all through the process, and look to understand modern views of interpreting,” they said.

The Way to Go

Anja Rütten, Conference Interpreter and Lecturer at the Technische Hochschule Köln, and Claudio Fantinuoli, Lecturer in Translation and Interpreting Studies at the Johannes Gutenberg-Universität Mainz/Germersheim, both said the research was “very interesting.”

“I find this research paper highly relevant. The whole human-machine interaction in interpreting is very interesting as it becomes very clear how humans and computers have different strengths that can complement each other,” Rütten said.

She added, “Identifying difficult terminology and providing suggestions for possible translations with high precision and recall is a good example where computers can support interpreters in a well-defined area they are probably superior in; thus leaving more of the human’s cognitive capacities to grasp the context, purpose, and meaning of the message to be interpreted — which is the task [better suited to] humans. I would be very interested in the user study outlined in the conclusions.”

According to Fantinuoli, who is also the brains behind InterpretBank, a terminology and knowledge management software for conference interpreters, “The paper presents a very interesting approach. There is still a lot of work to be done to have the first CAI tools with a higher degree of ‘intelligence,’ but this is the way to go.”

“Identifying difficult terminology and providing suggestions for possible translations with high precision and recall is a good example where computers can support interpreters in a well-defined area they are probably superior in.” — Anja Rütten

Rütten said it was noteworthy that the researchers think numbers and nouns are the most suitable items to identify. She pointed out, “In my recent study about simultaneous interpreters’ booth notes, half of the terminological records were nouns indeed — and more than 25% acronyms, which would be another interesting category to investigate. My study also showed that over 70% of the terminology noted down was written in one language only, the target language.”

She added, “A matter to be discussed could be if difficult target language terms suggested by a computer might be sufficient for interpreters to trigger their memory.”

As for Fantinuoli, he said that to make the new method more suitable for real-life situations, “the prediction should be extended to other key variables, such as the interpreter’s performance in the preceding time window (e.g., decalage, difficulties that arose, adopted strategies) and the interpreter’s idiosyncrasies (previous knowledge, event preparation, etc.).” He added, however, that it was difficult to actually identify and detect these variables.

Fantinuoli said it is “fascinating to think ” that this method does not need a pre-elaborated glossary; which meant that, potentially, any word could be translated. “However, this assumption is a bit naive because terminology is always context-based, meaning that there are as many translation candidates as there are subjects, clients, and so on,” he added.

Another point Fantinuoli raised is that unlike in CAT, where the translator can make an informed choice on the proposed translation provided, interpreters do not have that window; they cannot post-edit. “If something is presented to the user, then the interpreter should 100% rely on it,” he said. Fantinuoli mentioned that at the University of Mainz they are working on a way to increase the level of reliability of proposed translations.

In terms of productizing these solutions, he noted a challenge “underestimated by many,” which is that these technologies will often be cloud-based, posing confidentiality issues especially for the high-stakes settings in which simultaneous interpreters often work.

Asked to suggest helpful directions for research, he said that “generally speaking, research in the field of interpreting should focus more strongly on data.”

“It should be the task of interpreting-oriented studies to empirically research it with corpus linguistics analyses, machine learning and, of course, field experiments. The data is there. We should start to ask the right and useful questions, and research it,” Fantinuoli said.

TAGS

Alexander DrechselAlexander GansmeierAnja RüttenarXivCAIClaudio Fantinuolicomputer-assisted interpretingconference interpretationCraig StewartGraham NeubiginterpretationInterpretBankinterpretingJonathan DownieNikolai Voglersimultaneous interpretationTroublesome Terps
SHARE
Gino Diño

By Gino Diño

Content strategy expert and Online Editor for Slator; father, husband, gamer, writer―not necessarily in that order.

Advertisement

SUBSCRIBE TO THE SLATOR WEEKLY

Language Industry Intelligence
In Your Inbox. Every Friday

SUBSCRIBE

SlatorSweepSlatorPro
ResearchRFP CENTER

PUBLISH

PRESS RELEASEDIRECTORY LISTING
JOB ADEVENT LISTING

Bespoke advisory including speaking, briefings and M&A

SLATOR ADVISORY
Advertisement

Featured Reports

See all
Slator 2020 Language Industry M&A and Funding Report

Slator 2020 Language Industry M&A and Funding Report

by Slator

Slator 2021 Data-for-AI Market Report

Slator 2021 Data-for-AI Market Report

by Slator

Slator 2020 Medtech Translation and Localization Report

Slator 2020 Medtech Translation and Localization Report

by Slator

Pro Guide: Sales and Marketing for Language Service Providers

Pro Guide: Sales and Marketing for Language Service Providers

by Slator

Press Releases

See all
Rheinschrift Language Services – Strategic Improvements and Workforce Expansion in 2021

Rheinschrift Language Services – Strategic Improvements and Workforce Expansion in 2021

by Rheinschrift Language Services

Memsource Acquires Phrase

Memsource Acquires Phrase

by Memsource

Across Systems will be part of the Volaris Group

Across Systems will be part of the Volaris Group

by Across Systems GmbH

Upcoming Events

See All
  1. Handling Sensitive Information Webinar

    Handling Sensitive Calls with Limited English Proficient Consumers

    by Lionbridge

    · February 10

    Learn more about how Lionbridge Over-the-Phone Interpretation Services can help bridge communication gaps with limited...

    More info FREE

Featured Companies

See all
Text United

Text United

Memsource

Memsource

Wordbank

Wordbank

Protranslating

Protranslating

Seprotec

Seprotec

Versacom

Versacom

SDL

SDL

Smartling

Smartling

Lingotek

Lingotek

XTM International

XTM International

Smartcat

Smartcat

Translators without Borders

Translators without Borders

STAR Group

STAR Group

memoQ Translation Technologies

memoQ Translation Technologies

Advertisement

Popular articles

Why Netflix Shut Down Its Translation Portal Hermes

Why Netflix Shut Down Its Translation Portal Hermes

by Esther Bond

Top Language Industry Quotes of 2020

Top Language Industry Quotes of 2020

by Monica Jamieson

The Most Popular Language Industry Stories of 2020

The Most Popular Language Industry Stories of 2020

by Seyma Albarino

SlatorPod: The Weekly Language Industry Podcast

connect with us

footer logo

Slator makes business sense of the language services and technology market.

Our Company

  • Support
  • About us
  • Terms & Conditions
  • Privacy Policy

Subscribe to the Slator Weekly

Language Industry Intelligence
In Your Inbox. Every Friday

© 2021 Slator. All rights reserved.

Sign up to the Slator Weekly

Join over 13,000 subscribers and get the latest language industry intelligence every Friday

Your information will never be shared with third parties. No Spam.