logo image
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs
MENU
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs

Advertise on Slator! Download the 2021 Online Media Kit Now

  • Slator Market Intelligence
  • Slator Advertising Services
  • Slator Advisory
  • Login
Search
Generic filters
Exact matches only
Advertisement
What the Translation Industry Can Learn from Transcription

2 years ago

November 1, 2018

What the Translation Industry Can Learn from Transcription

Sponsored Content ·

by Ofer Shoshan

On November 1, 2018

2 years ago
Sponsored Content ·

by Ofer Shoshan

On November 1, 2018

What the Translation Industry Can Learn from Transcription

A few weeks ago, I watched a video of a presentation from a technology speaker on Youtube. He had a very heavy accent and made grammatical and pronunciation mistakes in almost every sentence, so I used Youtube’s automatic closed captioning to see if it would pick up what he was saying.

The results were amazing. Despite the accent and the mistakes, Youtube’s neural transcription engine managed to get most things right—and, where it did not, it was simply hard to understand what was said, even for a human.

Youtube’s closed captions are now powered by neural transcription engines, and it is not the only one. VerbIT, a Hybrid Transcription services provider run by Tom Livne, is a good example of a company founded on the very same technology. The model is straightforward: neural transcription engines produce an initial transcription which is then post-edited by humans. Finally, quality control experts review the project before it is delivered to the customer.

Advertisement

Just two or three years ago, voice recognition engines performed so poorly that VerbIT’s model would have remained theoretical and not practical, much less potentially profitable. Today, neural transcription engines produce transcriptions that can be up to 95% perfect, i.e. a human post-editor needs to fix only 5% of the text. Naturally, better sound quality could produce even better results.

Tom and his team’s post-editors do not even need to be professional transcribers, and yet customers get perfect results faster than they would from human transcription and at lower costs. Furthermore, VerbIT, as a company, has much higher throughput compared to traditional transcription companies.

A Revolution Before Our Eyes

Consider the magnitude of the revolution that is happening before our eyes: two to three years ago, high quality voice recognition was limited to very expensive systems and even then did not work very well. Today, commercially available inexpensive engines are handling complex transcriptions increasingly accurately. The revolution is happening faster than traditional transcription companies care to realize.

It is true, however, that there are some caveats to consider: most machine transcription engines are trained for English only, for instance, and factors such as voice quality and number of speakers also limit output accuracy. Yet this too is also changing quickly. The success of automatic English transcriptions drives faster adoption of other languages.

It is reasonable to assume that within one to three years, automatic transcription engines will successfully handle most common languages and types of material.

This technological achievement will have a huge business impact resulting in a totally different market layout. New players that leverage the hybrid transcription approach—combining neural machine transcription with human post-editing—are expected to dominate the market.

This massive change is just a matter of time.

Significant Competitive Advantage

Hybrid companies have another, major, business advantage: margins. The high accuracy of initial output requires minimal error correction. As a result, gross margins can be substantially higher compared to traditional transcription companies where intensive human effort requires higher rates of compensation. With better margins, VerbIT has a significant competitive advantage over incumbent transcription agencies.

On top of that, the hybrid approach also drives market expansion, as customers that have not transcribed before due to high costs and slow turnaround times can now reconsider transcription services. The specific budget and speed requirements of these customers also mean that their first choice is guaranteed to be hybrid companies, i.e. their business is a net addition to the current market size.

Clearly, the hybrid transcription approach is way better than the traditional approach. Likewise, most traditional transcription agencies that do not change in time will simply cease to exist.

Now replace “Transcription” with “Translation,” move the clock forward one to one and a half years, and it is plain to see the significance of this story.

TAGS

machine learningneural transcription enginesOfer ShoshanOne Hour Translationspeech recognitiontranscriptionVerbitYoutube
SHARE
Ofer Shoshan

By Ofer Shoshan

Ofer Shoshan is the CEO of One Hour Translation, providing enterprises with HALO - Hybrid AI Localization platform, Neural Machine Translation, and Multilingual human services. OHT allows great companies communicate with great customers quickly and efficiently across any language. Learn more are www.onehourtranslation.com

Advertisement

SUBSCRIBE TO THE SLATOR WEEKLY

Language Industry Intelligence
In Your Inbox. Every Friday

SUBSCRIBE

SlatorSweepSlatorPro
ResearchRFP CENTER

PUBLISH

PRESS RELEASEDIRECTORY LISTING
JOB ADEVENT LISTING

Bespoke advisory including speaking, briefings and M&A

SLATOR ADVISORY
Advertisement

Featured Reports

See all
Slator 2020 Language Industry M&A and Funding Report

Slator 2020 Language Industry M&A and Funding Report

by Slator

Slator 2021 Data-for-AI Market Report

Slator 2021 Data-for-AI Market Report

by Slator

Slator 2020 Medtech Translation and Localization Report

Slator 2020 Medtech Translation and Localization Report

by Slator

Pro Guide: Sales and Marketing for Language Service Providers

Pro Guide: Sales and Marketing for Language Service Providers

by Slator

Press Releases

See all
Across Systems will be part of the Volaris Group

Across Systems will be part of the Volaris Group

by Across Systems GmbH

How Localex Made It Through the Pandemic

How Localex Made It Through the Pandemic

by Localex

Join Us for the First Virtual Together 2021 Next Month!

Join Us for the First Virtual Together 2021 Next Month!

by Elia

Upcoming Events

See All
  1. Handling Sensitive Information Webinar

    Handling Sensitive Calls with Limited English Proficient Consumers

    by Lionbridge

    · February 10

    Learn more about how Lionbridge Over-the-Phone Interpretation Services can help bridge communication gaps with limited...

    More info FREE

Featured Companies

See all
Text United

Text United

Memsource

Memsource

Wordbank

Wordbank

Protranslating

Protranslating

Seprotec

Seprotec

Versacom

Versacom

SDL

SDL

Smartling

Smartling

Lingotek

Lingotek

XTM International

XTM International

Smartcat

Smartcat

Translators without Borders

Translators without Borders

STAR Group

STAR Group

memoQ Translation Technologies

memoQ Translation Technologies

Advertisement

Popular articles

Why Netflix Shut Down Its Translation Portal Hermes

Why Netflix Shut Down Its Translation Portal Hermes

by Esther Bond

Top Language Industry Quotes of 2020

Top Language Industry Quotes of 2020

by Monica Jamieson

The Slator 2020 Language Service Provider Index

The Slator 2020 Language Service Provider Index

by Slator

SlatorPod: The Weekly Language Industry Podcast

connect with us

footer logo

Slator makes business sense of the language services and technology market.

Our Company

  • Support
  • About us
  • Terms & Conditions
  • Privacy Policy

Subscribe to the Slator Weekly

Language Industry Intelligence
In Your Inbox. Every Friday

© 2021 Slator. All rights reserved.

Sign up to the Slator Weekly

Join over 13,000 subscribers and get the latest language industry intelligence every Friday

Your information will never be shared with third parties. No Spam.