logo image
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs
MENU
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • Design Thinking – February 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs

Advertise on Slator! Download the 2021 Online Media Kit Now

  • Slator Market Intelligence
  • Slator Advertising Services
  • Slator Advisory
  • Login
Search
Generic filters
Exact matches only
Advertisement
Facebook to Open Source Its Neural Machine Translation, Zuckerberg Announces

4 years ago

May 10, 2017

Facebook to Open Source Its Neural Machine Translation, Zuckerberg Announces

Technology ·

by Eden Estopace

On May 10, 2017

4 years ago
Technology ·

by Eden Estopace

On May 10, 2017

Facebook to Open Source Its Neural Machine Translation, Zuckerberg Announces

Facebook is claiming that a new approach to machine translation using convolutional neural networks (CNNs) can help translate languages more accurately (read: increase quality on a BLEU scale) and up to nine times faster than the traditional recurrent neural networks (RNNs). CEO Mark Zuckerberg himself announced the news in his own Facebook page.

The company’s bold claims were anchored on results of a study conducted by five members of Facebook’s Artificial Intelligence Research (FAIR) team and outlined in detail in a paper entitled “Convolutional Sequence to Sequence Learning.”

“To help us get there faster, we’re sharing our work publicly so that all researchers can use it to build better translation tools,” Zuckerberg said.

Advertisement

“I’m looking forward to making universal translation a reality” — Mark Zuckerberg

Research authors Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin shared in an accompanying post on the Facebook developer blog that the FAIR sequence modeling toolkit (fairseq) source code and the trained systems are available under an open source license on GitHub.  

Dr. John Tinsley, CEO & Co-Founder, Iconic Translation Machines Ltd., who reviewed the paper, told Slator that the results are impressive.

“It’s quite a different approach, using convolutional neural networks (CNNs) as opposed to recurrent neural networks (RNNs). The reason this hasn’t been looked at for translation before is that CNNs typically work well with fixed-length input and RNNs with variable-length input. Obviously, with language, things are very variable so RNNs were the natural starting point,” he explained.

His concern, though, is quality. But he observed that some of the shared task data reported are comparable to if perhaps a little better than existing approaches to Neural MT.

“However, the single biggest impact of this work is the speed,” he said. “One of the current drawbacks of Neural MT is how long it actually takes to train the models, and this approach by Facebook using CNNs allows them to be trained up to seven times faster. This is because it’s much easier to parallelise the training process of CNNs given how they process different parts of the data (simultaneously as opposed to sequentially). That being said, it still requires powerful hardware.”

On the release of the source code, Dr. Tinsley said he approves of the open source approach. He said, “It’s good to see the tech behemoths taking this approach now and opening up their research to the wider community.”

“This approach by Facebook using CNNs allows them to be trained up to seven times faster” — John Tinsley, CEO, Iconic Translation Machines

Facebook’s AI researchers noted, however, that CNNs (also called ConvNets) are not entirely new and was actually originally developed decades ago by computer scientist Yann LeCun, a Silver Professor of Dara Science, Computer Science, Neural Science, and Electrical Engineering at New York University and now Director of AI Research at Facebook.

In a Google+ post on June 13, 2015, the professor already noted the surge of interest in convolutional nets in computer vision, which he said has brought many applications and new ideas. He shared that many of the young researchers who have been working with ConvNets (CNNs) for years were his students.

Facebook’s interest in translation is deep. Zuckerberg mentioned in his post that the company is now “performing over two billion translations in more than 45 languages every day.

Slator, however, reported on April 26, 2017, why translation is still hard at Facebook, according to an engineer who discussed machine translation in a session at the F8 Developer Conference in the US.

“But there’s still a lot more to do,” Zuckerberg admitted. “You should be able to read posts or watch videos in any language, but so far the technology hasn’t been good enough.”

TAGS

FacebookIconic Translation MachinesJohn Tinsleyneural machine translation
SHARE
Eden Estopace

By Eden Estopace

IT journalist and Online Editor at Slator. Loves books, movies, and gadgets; writes for a living, but codes for fun.

Advertisement

SUBSCRIBE TO THE SLATOR WEEKLY

Language Industry Intelligence
In Your Inbox. Every Friday

SUBSCRIBE

SlatorSweepSlatorPro
ResearchRFP CENTER

PUBLISH

PRESS RELEASEDIRECTORY LISTING
JOB ADEVENT LISTING

Bespoke advisory including speaking, briefings and M&A

SLATOR ADVISORY
Advertisement

Featured Reports

See all
Slator 2020 Language Industry M&A and Funding Report

Slator 2020 Language Industry M&A and Funding Report

by Slator

Slator 2021 Data-for-AI Market Report

Slator 2021 Data-for-AI Market Report

by Slator

Slator 2020 Medtech Translation and Localization Report

Slator 2020 Medtech Translation and Localization Report

by Slator

Pro Guide: Sales and Marketing for Language Service Providers

Pro Guide: Sales and Marketing for Language Service Providers

by Slator

Press Releases

See all
iDISC Awarded ISO 27001 Information Security Management Certification

iDISC Awarded ISO 27001 Information Security Management Certification

by iDISC

XTRF Launches a Bi-Monthly Free Networking Event for Localization Professionals

XTRF Launches a Bi-Monthly Free Networking Event for Localization Professionals

by XTRF

150 Million Words Translated: the German EU Council Presidency Translator Sets New Records

150 Million Words Translated: the German EU Council Presidency Translator Sets New Records

by Tilde

Upcoming Events

See All
  1. Memsource MT Post-Editing Pricing Models Webinar

    Pricing Models for MT Post-Editing Workshop

    by Memsource

    · February 3

    Hear a panel of innovative localization professionals share different approaches for MT post-editing pricing.

    More info FREE

Featured Companies

See all
Text United

Text United

Memsource

Memsource

Wordbank

Wordbank

Protranslating

Protranslating

Seprotec

Seprotec

Versacom

Versacom

SDL

SDL

Smartling

Smartling

Lingotek

Lingotek

XTM International

XTM International

Smartcat

Smartcat

Translators without Borders

Translators without Borders

STAR Group

STAR Group

memoQ Translation Technologies

memoQ Translation Technologies

Advertisement

Popular articles

Why Netflix Shut Down Its Translation Portal Hermes

Why Netflix Shut Down Its Translation Portal Hermes

by Esther Bond

The Slator 2020 Language Service Provider Index

The Slator 2020 Language Service Provider Index

by Slator

Top Language Industry Quotes of 2020

Top Language Industry Quotes of 2020

by Monica Jamieson

SlatorPod: The Weekly Language Industry Podcast

connect with us

footer logo

Slator makes business sense of the language services and technology market.

Our Company

  • Support
  • About us
  • Terms & Conditions
  • Privacy Policy

Subscribe to the Slator Weekly

Language Industry Intelligence
In Your Inbox. Every Friday

© 2021 Slator. All rights reserved.

Sign up to the Slator Weekly

Join over 13,000 subscribers and get the latest language industry intelligence every Friday

Your information will never be shared with third parties. No Spam.