logo image
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • SlatorCon Remote May 2021
    • Email Marketing for Freelance Linguists
    • Preparing for the Critical Google Update Coming in May 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs
MENU
  • News
    • People Moves
    • Deal Wins
    • Demand Drivers
    • M&A and Funding
    • Financial Results
    • Technology
    • Academia
    • Industry News
    • Features
    • Machine Translation
    • — Divider —
    • Slator Pro
    • — Divider —
    • Press Releases
    • Sponsored Content
  • Data & Research
    • Research Reports & Pro Guides
    • Language Industry Investor Map
    • Real-Time Charts of Listed LSPs
    • Language Service Provider Index
  • Podcasts & Videos
  • Events
    • SlatorCon Remote May 2021
    • Email Marketing for Freelance Linguists
    • Preparing for the Critical Google Update Coming in May 2021
    • — Divider —
    • SlatorCon Coverage
    • Other Events
  • Directory
  • RFP Center
  • Jobs

Register For Email Marketing for Freelance Linguists and Learn How To Win New Clients.

  • Slator Market Intelligence
  • Slator Advertising Services
  • Slator Advisory
  • Login
Search
Generic filters
Exact matches only
Advertisement
Google’s Neural Model Translates New Languages Without Prior Training

4 years ago

November 15, 2016

Google’s Neural Model Translates New Languages Without Prior Training

Technology ·

by Florian Faes

On November 15, 2016

4 years ago
Technology ·

by Florian Faes

On November 15, 2016

Google’s Neural Model Translates New Languages Without Prior Training

As Google deploys neural machine translation (NMT) to more languages in Google Translate (GT), its engineers face a challenge familiar to EU’s interpreter unit. Ideally, the EU would want to have interpreters available to translate directly from any of the 24 official languages into any other. But the resulting 576 combinations would, of course, be overwhelming. So the EU chose to use English as the relay language.

At Google, the numbers are, as expected, a little bigger. GT’s 100-plus languages mean the tech giant would have to build and train more than 10,000 individual models if each model only supports a single language pair. With NMT, that will not be necessary. In a paper published on November 14, 2016, a group of Google engineers around Mike Schuster and Quoc Le presented a method to translate between multiple languages using a single model.

That NMT models can be language-agnostic has already been demonstrated by researchers. The Google team said the new solution “requires no change in the model architecture from our base system”, is “significantly simpler than previous proposals,” and “improves the translation quality of all involved language pairs.”

Advertisement

The new model was based on the deep-learning framework TensorFlow and trained on the same NMT pipeline Google introduced in its original NMT paper.

Zero Shot

According to the paper, there are three main benefits to the new solution. The first is simplicity. The model dramatically reduces the number of models from the theoretical 10,000-plus, which would be “problematic in a production environment.”

Second, the model apparently improves translation quality for low-resource languages; that is, languages where little reference data is available. Third, and most interestingly, Google said the new solution allows translation between language pairs the model had never seen. The paper calls this “zero shot translations.”

The researchers give the example of an NMT model trained on Portuguese into English and English into Spanish that generates “reasonable” translations for Portuguese into Spanish “although it has not seen any data for that language pair.” The model’s ability for zero shots actually came as a surprise to the researchers.

Google also claimed it is a world’s first, saying, “to our knowledge this is the first demonstration of true multilingual zero-shot translation.”

Apparently, there is also a speed advantage to zero shots: “Besides the pleasant fact that zero-shot translation works at all it has also the advantage of halving decoding speed.”

Code Switch

Another benefit of the new solution is that it allows intra-sentence code-switching—producing a translation into English from a sentence written partially in, for example, Korean and Japanese. One potential application of this may be the e-discovery process, where large data sets of data containing multiple languages need to be translated.

For all its quality improvement claims, Google used the BLEU yardstick we recently analyzed.

Naturally, there is still a ways to go. It seems Google has rolled out NMT for other languages now, such as English into German, although Slator has not verified this. In a random testing of GT’s performance, there appears to be an increase in fluency (one of NMT’s much touted benefits), but also an inclination for omissions (missing verb) and crass mistranslations (to “whiff” becomes to “piss”—perhaps, because the actual colloquialism is “to take a whizz,” meaning to urinate).

Update: In a blog post published hours after this article was posted Google confirmed it has rolled out GNMT for total of eight languages (including the above mentioned English into German).

TAGS

Googlemachine translationMike Schusterneural machine translation
SHARE
Florian Faes

By Florian Faes

Co-Founder of Slator. Linguist, business developer, and mountain runner. Based in the beautiful lakeside city of Zurich, Switzerland.

Advertisement

SUBSCRIBE TO THE SLATOR WEEKLY

Language Industry Intelligence
In Your Inbox. Every Friday

SUBSCRIBE

SlatorSweepSlatorPro
ResearchRFP CENTER

PUBLISH

PRESS RELEASEDIRECTORY LISTING
JOB ADEVENT LISTING

Bespoke advisory including speaking, briefings and M&A

SLATOR ADVISORY
Advertisement

Featured Reports

See all
Slator 2020 Language Industry M&A and Funding Report

Slator 2020 Language Industry M&A and Funding Report

by Slator

Slator 2021 Data-for-AI Market Report

Slator 2021 Data-for-AI Market Report

by Slator

Slator 2020 Medtech Translation and Localization Report

Slator 2020 Medtech Translation and Localization Report

by Slator

Pro Guide: Sales and Marketing for Language Service Providers

Pro Guide: Sales and Marketing for Language Service Providers

by Slator

Press Releases

See all
BLEND Raises $10m to Fuel Global Growth with End-to-end Localization Services

BLEND Raises $10m to Fuel Global Growth with End-to-end Localization Services

by BLEND

Iconic Launches INTRA Translation Platform

Iconic Launches INTRA Translation Platform

by Iconic

Pangeanic Is Now Certified to ISO 27001 Information Security

Pangeanic Is Now Certified to ISO 27001 Information Security

by Pangeanic

Upcoming Events

See All
  1. Smartling - Global Ready Conference 2021

    Global Ready Conference

    by Smartling

    · April 14

    When you can't traverse the world, let the world come to you. Join our annual global event from home.

    More info FREE

Featured Companies

See all
Sunyu Transphere

Sunyu Transphere

Text United

Text United

Memsource

Memsource

Wordbank

Wordbank

Protranslating

Protranslating

Seprotec

Seprotec

Versacom

Versacom

Smartling

Smartling

XTM International

XTM International

Translators without Borders

Translators without Borders

STAR Group

STAR Group

memoQ Translation Technologies

memoQ Translation Technologies

Advertisement

Popular articles

Poland Rules on LSP Using Google Translate; Defines ‘Professional Translator’

Poland Rules on LSP Using Google Translate; Defines ‘Professional Translator’

by Marion Marking

The Slator 2021 Language Service Provider Index

The Slator 2021 Language Service Provider Index

by Slator

Behind the Scenes of the European Parliament’s Pivot to Remote Interpreting

Behind the Scenes of the European Parliament’s Pivot to Remote Interpreting

by Seyma Albarino

SlatorPod: The Weekly Language Industry Podcast

connect with us

footer logo

Slator makes business sense of the language services and technology market.

Our Company

  • Support
  • About us
  • Terms & Conditions
  • Privacy Policy

Subscribe to the Slator Weekly

Language Industry Intelligence
In Your Inbox. Every Friday

© 2021 Slator. All rights reserved.

Sign up to the Slator Weekly

Join over 13,500 subscribers and get the latest language industry intelligence every Friday

Your information will never be shared with third parties. No Spam.